Nonequilibrium Materials Engineering beyond Floquet

Michael A. Sentef
lab.sentef.org

Max-Planck Institute for the Structure and Dynamics of Matter, Hamburg
Boston University, November 2, 2018

Funded through Deutsche Forschungsgemeinschaft
Emmy Noether Programme (SE 2558/2-1)
Max Planck Institute for the Structure and Dynamics of Matter
Theoretical description of pump-probe spectroscopy in solids

lab.sentef.org

Funded through Deutsche Forschungsgemeinschaft Emmy Noether Programme (SE 2558/2-1)
Max Planck Institute for the Structure and Dynamics of Matter
Driven is different

Kapitza pendulum

dynamical stabilization of a metastable state
Is driven also useful?

Exposing hidden states

Light-induced new states?

Possible light-induced superconductivity in K_3C_{60} at high temperature

L Stojchevska et al. Science 2014;344:177-180

... and many more.
Pump-probe spectroscopy

- stroboscopic investigations of dynamic phenomena

Muybridge 1887

TbTe3 CDW metal

Image courtesy: J. Sobota / F. Schmitt
Grand Challenge #3: How do remarkable properties of matter emerge from complex correlations of the atomic or electronic constituents and how can we control these properties?

Grand Challenge #5: How do we characterize and control matter away – especially very far away – from equilibrium?
Challenge

movies by Koichiro Tanaka (Kyoto university)

many-body problem
(electrons + ions)

nonequilibrium many-body problem
(electrons + ions + photons)

Mission statement:
To understand and predict electron-ion dynamics and control of emergent nonequilibrium electronic structure
Challenge

Main challenges:
• hierarchy of energy and time scales
• high laser intensities: nonperturbative/nonlinear

Possible approaches:
• first principles (time-dependent density functional theory (TDDFT))
• effective models:
 – Feynman diagrams: self-energy
 – Keldysh nonequilibrium Green’s functions
 – connection with DFT: Sham-Schlüter integral equation
Ultrafast Materials Science today

Understanding the nature of quasiparticles
- Relaxation dynamics
- Control of couplings

PRX 3, 041033 (2013) PRB 95, 205111 (2017)

Understanding ordered phases
- Collective oscillations
- Competing orders

PRB 93, 144506 (2016) arXiv:1808.00712
arXiv:1810.06536

Creating new states of matter
- nonequilibrium topological states

Nature Comm. 6, 7047 (2015)
Nature Comm. 8, 13940 (2017)
Nature Comm. 9, 4452 (2018)

Image courtesy: D. Basov
Relaxation dynamics

PRL 111, 077401 (2013)
nonthermal pumped states

PRB 87, 235139 (2013)
extracting unoccupied electronic structure

PRX 3, 041033 (2013)
small fluences

PRB 90, 075126 (2014)
fluence dependence

Nat. Comm. 7, 13761 (2016)
comparison with experiment
Electron-boson coupling

Holstein model (minimal version):

\[H = \sum_k \epsilon(k) c_k^\dagger c_k + \Omega \sum_i b_i^\dagger b_i - g \sum_i c_i^\dagger c_i (b_i + b_i^\dagger) \]

Electrons (Fermi gas/liquid) Bosons (e.g., Einstein phonon) Electron-boson coupling

Pump laser:

\[\epsilon(k) \rightarrow \epsilon(k, t) \]
Method: Keldysh Green functions

\[G_k(\omega) = G^0_k(\omega) + G^0_k(\omega) \Sigma(\omega) G_k(\omega) \]

\[G_k(t, t') = G^0_k(t, t') + \int dt_1 dt_2 G^0_k(t, t_1) \Sigma(t_1, t_2) G_k(t_2, t') \]

self-energy \(\Sigma \): electron-electron scattering electron-phonon scattering

...
Electron-boson coupling

Weak pump

Strong pump

t = -65.00

time unit = 0.66 fs

boson window effect for fast versus slow relaxation

nonlinear response for strong pump

Max Planck Institute for the Structure and Dynamics of Matter
Orderer phases

PRB 92, 224517 (2015)

Higgs amplitude mode oscillations in pump-probe photoemission spectroscopy

PRB 93, 144506 (2016)

Light-enhanced superconductivity: electron-phonon scattering versus collective order parameter dynamics
Some recent key results

How to engineer materials away from equilibrium?

Part I: Light-enhanced electron-phonon coupling

Resonant excitation of IR phonon enhances electron-phonon coupling

E: Pomarico et al., PRB 95, 024304 (2017) – experiment (bilayer graphene)

M. A. Sentef, PRB 95, 205111 (2017) – theory

Part II: Optical control of chiral superconductors

Short laser pulses allow for switching of Majorana modes

M. Claassen et al., arXiv:1810.06536

Part III: From classical to quantized photon fields

Materials engineering in an optical cavity using vacuum fluctuations

M. A. Sentef et al., arXiv:1802.09437
I Resonant excitation of crystal lattice

M. Först et al., Nature Physics 7, 854 (2011)
Classical nonlinear phononics

Simplest model: classical dynamics

\[\dot{Q}_{RS} + \Omega_{RS}^2 Q_{RS} = A Q_{IR}^2 \]

\[\dot{Q}_{IR} + \Omega_{IR}^2 Q_{IR} = \frac{e^* E_0}{\sqrt{M_{IR}}} \sin(\Omega_{IR} t) F(t) \]

Rectified phonon field ➔ directional force

\[H = A Q_{IR}^2 Q_{RS} \]

“nonlinear phononics“

M. Först et al., Nature Physics 7, 854 (2011)
Classical nonlinear phononics

Explains a number of observed effects, e.g.,

- structurally induced metal-insulator transitions
- phononic rectification in YBCO
 Mankowsky et al., Nature 516, 71 (2014)
- ferroelectric switching in LiNbO$_3$

Classical phonon dynamics does not explain all effects in IR-driven materials.

examples: - light-induced superconductivity
 - light-enhanced el-ph coupling

... quantum nature of phonons important?
Enhanced electron-phonon coupling in graphene with periodically distorted lattice

E. Pomarico, M. Mitrano, H. Bromberger, M. A. Sentef, A. Al-Temimy, C. Coletti, A. Stöhr, S. Link, U. Starke, C. Cacho, R. Chapman, E. Springate, A. Cavalleri, and I. Gierz
Phys. Rev. B 95, 024304 – Published 13 January 2017

PRB 95, 024304 (2017)

enhanced electron-phonon coupling for pump on resonance with IR phonon
Dynamically enhanced coupling

PRB 95, 024304 (2017)

transient reduction of THz Drude weight
accelerated tr-ARPES relaxation

driving on phonon resonance: 3-fold enhancement of effective λ_{el-ph}
Quantum nonlinear phononics

2-site toy model, solve dynamics exactly

\[\hat{H}(t) = -J \sum_{\sigma} (c_{1,\sigma}^\dagger c_{2,\sigma} + c_{2,\sigma}^\dagger c_{1,\sigma}) + g_2 \sum_{\sigma,l=1,2} \hat{n}_{l,\sigma} (b_{l} + b_{l}^\dagger)^2 \]

\[+ \Omega \sum_{l=1,2} b_{l}^\dagger b_{l} + F(t) \sum_{l=1,2} (b_{l} + b_{l}^\dagger), \]

Idea: Drive nonlinearly coupled IR-phonon, analyze electronic response

Drive: \[F(t) = F \sin(\omega t), \]

Response: \[I(\omega, t_0) = \Re \int dt_1 dt_2 e^{i\omega(t_1-t_2)} s_{t_1, t_2, \tau}(t_0) \]

time-resolved spectral function

\[\times \left[\langle \psi(t_2) | c_{1,\uparrow}^\dagger \mathcal{T} e^{-i \int_{t_1}^{t_2} H(t) dt} c_{1,\uparrow} | \psi(t_1) \rangle + + \langle \psi(t_1) | c_{1,\uparrow}^\dagger \mathcal{T} e^{-i \int_{t_2}^{t_1} H(t) dt} c_{1,\uparrow}^\dagger | \psi(t_2) \rangle \right], \]
IR-driven nonlinear el-ph system

Driving IR phonon with sinusoidal $F(t)$: coherent phonon oscillation

enhancement of local electronic double occupancy

\rightarrow induced el-el attraction
Reduced coherence peaks with stronger driving

light-enhanced el-ph coupling

light-induced polaron formation

2-phonon shakeoff
Field dependence

Theory

Data by E. Pomarico, unpublished

Coherence peak weight loss: proportional to field intensity F^2 consistent with experiments

Max Planck Institute for the Structure and Dynamics of Matter
Summary I

- enhanced electron-phonon coupling in phononically driven bilayer graphene

\[PRB \ 95, \ 024304 \ (2017) \]

Exact solution of electron-phonon model system:

- theoretical proposal: nonlinear el-ph coupling as mechanism behind this enhancement

\[PRB \ 95, \ 205111 \ (2017) \]
II Optical control of Majoranas

• prior work: optical control of competing orders

Theory of Laser-Controlled Competing Superconducting and Charge Orders

M. A. Sentef, A. Tokuno, A. Georges, and C. Kollath
Phys. Rev. Lett. 118, 087002 – Published 21 February 2017

– selective laser driving **switches** between phases
II Optical control of Majoranas

• can one switch the chirality of a 2D topological superconductor?

key idea: use two-pulse sequence with linearly and circularly polarized light
multiband Bogoliubov-de-Gennes Hamiltonians for doped graphene (d+id) and Sr2RuO4 (p+ip) coupling to fermionic reservoir to dissipate energy
laser driving via Peierls substitution

Keldysh equations of motion for Nambu Green’s functions:

\[i\partial_t G_k(t, t') = \mathcal{H}_k(t, \Delta_k(t)) G_k(t, t') + \int d\tau \hat{\Sigma}_k(t, \tau) G_k(\tau, t') \]

\[\Delta_k(t) = \frac{1}{L} \sum_j u^{(j)} \hat{\eta}_k^{(j)} \sum_{k', \alpha \beta} \hat{\eta}_{k' \alpha \beta} \left\langle \hat{c}_{-k', \beta \downarrow} \hat{c}_{k', \alpha \uparrow} \right\rangle \]
Optical control of Majoranas

A two-pulse sequence reverses d+id state in graphene.

Time-resolved spectroscopy tracks chirality reversal.
Summary II

• All-optical control of chiral Majorana modes
• towards arbitrarily programmable quantum computer?

M. Claassen
D. Kennes
III Cavity materials

• can one use enhanced vacuum fluctuations to change materials properties?
Cavity materials

BCS superconductors: phonon-mediated superconductivity

Cavity-assisted mesoscopic transport of fermions: Coherent and dissipative dynamics.
Hagenmüller et al., 1801.09876

Cavity-mediated electron-photon superconductivity
Frank Schlöwa, Andrea Cavalleri, and Dieter Jaksch

Exciton-Polariton Mediated Superconductivity
Fabrice P. Laussy, Alexey V. Kavokin, and Ivan A. Shelykh

Cavity Quantum Eliashberg Enhancement of Superconductivity
Jonathan B. Curtis, Zachary M. Raines, Andrew A. Allocco, Mohammad Hafezi, and Victor M. Galitski

Manipulating quantum materials with quantum light
Martin Kiffner, Jonathan Coulthard, Frank Schlöwa, Arzhang Ardavan, and Dieter Jaksch

Cavity superconductor-polaritons
Andrew A. Allocco, Zachary M. Raines, Jonathan B. Curtis, and Victor M. Galitski

Superradiant Quantum Materials
Giacomo Mazza and Antoine Georges

Ab-initio Exciton-polaritons: Cavity control of Dark Excitons in two dimensional Materials
Simone Latini, Enrico Ronca, Umberto De Giovannini, Hannes Hübscher, and Angel Rubio

Max Planck Institute for the Structure and Dynamics of Matter
monolayer FeSe/STO

monolayer FeSe/STO: $T_c > 65$ K
bulk FeSe: $T_c = 9$ K

Huang and Hoffman, Annu. Rev. CMP 8, 311 (2017)
monolayer FeSe/STO: ARPES

replica bands: forward (small-q) electron-phonon scattering

monolayer FeSe/STO: interfacial phonon

bare el-phonon vertex

\[g(q) = g_0 \exp\left(-|q|/q_0\right) \]

\[q_0^{-1} = h_0 \sqrt{\epsilon_\parallel/\epsilon_\perp} \]

\[\epsilon_\parallel/\epsilon_\perp \approx 100 \]

Lee et al., Nature 515, 245 (2014)

Huang and Hoffman, Annu. Rev. CMP 8, 311 (2017)
Cavity engineering

- idea: use **phonon polaritons** to enhance electron-phonon coupling

Huang and Hoffman, Annu. Rev. CMP 8, 311 (2017)
Model and Method

\[H = \sum_{\mathbf{k}, \sigma} \varepsilon_{\mathbf{k}} c_{\mathbf{k}, \sigma}^\dagger c_{\mathbf{k}, \sigma} + \frac{1}{\sqrt{N}} \sum_{\mathbf{k}, \mathbf{q}, \sigma, \lambda = \pm} c_{\mathbf{k} + \mathbf{q}, \sigma}^\dagger c_{\mathbf{k}, \sigma} (g_\lambda^*(\mathbf{q}) \alpha_{\mathbf{q}, \lambda}^\dagger + g_\lambda(\mathbf{q}) \alpha_{\mathbf{q}, \lambda}) + \sum_{\mathbf{q}, \lambda = \pm} \omega_\lambda(\mathbf{q}) \alpha_{\mathbf{q}, \lambda}^\dagger \alpha_{\mathbf{q}, \lambda} \]

- electrons
- el-polariton coupling
- polaritons

bare el-phonon vertex

G-self-consistent Migdal-Eliashberg diagram

\[g(\mathbf{q}) = g_0 \exp(-|\mathbf{q}|/q_0) \quad q_0^{-1} = h_0 \sqrt{\epsilon_\parallel/\epsilon_\perp} \]

Mass enhancement: \(m^*/m = 1 + \lambda \)
Cavity materials: Phonon polaritons

\[\omega(q) = \omega_+ (\text{upper polariton}) + \Omega (\text{phonon}) + \omega_- (\text{lower polariton}) \]

Enhanced electron-phonon coupling, controlled by cavity volume
Superconductivity

suppressed superconductivity despite enhanced el-ph coupling

\[T_C \approx \frac{\lambda \Omega}{2 + 3\lambda} \]

\(T_{C, BCS} \approx 1.13\Omega \exp\left(-\frac{1}{\lambda}\right) \)

forward scattering vs. q-independent scattering
Summary III

- cavity leads to **enhanced electron-phonon coupling**
- can one also enhance superconductivity?

Summary

Ultrafast laser engineering of

- band structure, topology (Floquet)

 * Nature Commun. 6, 7047 (2015)
 * Nature Commun. 8, 13940 (2017)
 * arXiv:1803.07447

- electron-phonon coupling

 * PRB 95, 024304 (2017)
 * PRB 95, 205111 (2017)
 * arXiv:1802.09437

- Hubbard model with strong subresonant band structure, topology (Floquet)

 * PRL 121, 097402 (2018)

- ordered phases

 * PRB 93, 144506 (2016) arXiv:1808.00712
 * arXiv:1810.06536

Towards nonequilibrium materials engineering
Outlook: Group projects

R. Tuovinen (postdoc): nonequilibrium Green’s functions (GKBA) for time-resolved transport and excitonic condensates (JCTC 14, 2495 (2018); arXiv:1808.00712)

S. Ramirez (PhD student) light-induced Majoranas

M. Kalthoff (PhD student) time-dependent matrix product states (t-DMRG) for Floquet engineering of correlated systems (w/ D. Kennes, FU Berlin)

D. Hofmann (master student) topological exciton polaritons (master), machine learning for time-dependent variational wave functions (w/ G. Carleo, CCQ NYC)

X. Wang (student, Tsinghua) Green’s functions for cavity 2D materials with focus on topology

M. Puviani (PhD st., Modena) quantum nonlinear phononics, ultrafast melting of ferrielectric charge-density wave (arXiv:1806.08187, PRB)