Nonequilibrium Materials Engineering

Michael A. Sentef

lab.sentef.org

Max-Planck Institute for the Structure and Dynamics of Matter, Hamburg

Seminar FMQ Stuttgart, 18.1.2019

Funded through Deutsche Forschungsgemeinschaft
Emmy Noether Programme (SE 2558/2-1)
Max Planck Institute for the Structure and Dynamics of Matter
Quantum materials

W. Hu et al., Nature Materials 13, 705 (2014)

Image Credit: Department of Theoretical Physics at Ural University
Engineering materials with light

condensed matter
quantum materials
atomic-scale control

ultrafast spectroscopy
revealing elementary couplings
light-induced new states of matter

nonequilibrium
materials engineering

pump-probe: strong classical fields

quantum optics
nanoplasmonics
polaritonic chemistry
QED: vacuum fluctuations

Y. Cao et al., Nature 556, 43 (2018)

R. Chikkaraddy et al., Nature 535, 127 (2016)

Y. Cao et al., Nature 556, 43 (2018)

QED: vacuum fluctuations

Max Planck Institute for the Structure and Dynamics of Matter
Engineering materials with light

Hamiltonian engineering
e.g., Floquet-Bloch bands

Distributional engineering

many ingredients, hard to disentangle

J. Sobota et al., JESRP 195, 249 (2014)
Engineering materials with light

Exposing hidden states
nonthermal switching process

Light-induced new states
transient superconductivity?

\(1\text{T-TaS}_2\)

Resistance after a laser pulse

\(35\text{ fs (800 nm)}\)

L. Stojchevska et al., Science 344, 177 (2014)

©Jörg Harms, MPSD

microscopic understanding?

M. Mitrano et al., Nature 530, 461 (2016)

Igor Vaskivskyi

L. Stojchevska et al., Science 2014;344:177-180

Max Planck Institute for the Structure and Dynamics of Matter
Pump-probe spectroscopy

- stroboscopic investigations of dynamic phenomena

Muybridge 1887

Image courtesy: J. Sobota / F. Schmitt
Understanding the nature of quasiparticles
- Relaxation dynamics
- Control of couplings

PRX 3, 041033 (2013) PRB 95, 205111 (2017)

Understanding ordered phases
- Collective oscillations
- Competing orders

PRB 93, 144506 (2016) arXiv:1808.00712
arXiv:1810.06536

Creating new states of matter
- nonequilibrium topological states

Nature Comm. 6, 7047 (2015)
Nature Comm. 8, 13940 (2017)
Nature Comm. 9, 4452 (2018)
Electron-boson coupling

Holstein model (minimal version):

\[H = \sum_k \epsilon(k) c_k^\dagger c_k + \Omega \sum_i b_i^\dagger b_i - g \sum_i c_i^\dagger c_i (b_i + b_i^\dagger) \]

Electrons (Fermi gas/liquid) \hspace{1cm} Bosons (e.g., Einstein phonon) \hspace{1cm} Electron-boson coupling

Pump laser:

\[\epsilon(k) \rightarrow \epsilon(k, t) \]
Method: Keldysh Green functions

\[G_k(\omega) = G_k^0(\omega) + G_k^0(\omega) \Sigma(\omega) G_k(\omega) \]

\[G_k(t, t') = G_k^0(t, t') + \int dt_1 dt_2 G_k^0(t, t_1) \Sigma(t_1, t_2) G_k(t_2, t') \]

self-energy \(\Sigma \):
- electron-electron scattering
- electron-phonon scattering

pump-probe photoemission
Electron-boson coupling

Weak pump

Strong pump

t = -65.00

time unit = 0.66 fs

Rameau et al., Nat. Comm. 7, 13761 (2016)

boson window effect for fast versus slow relaxation

nonlinear response for strong pump
Ordered phases

PRB 92, 224517 (2015)

Higgs amplitude mode oscillations in pump-probe photoemission spectroscopy

(many others: Murakami, Eckstein, Werner, Knap, Demler, Thorwart, Mitra, Kennes, Millis, ...)

PRB 93, 144506 (2016)

Light-enhanced superconductivity:
electron-phonon scattering versus collective order parameter dynamics

Max Planck Institute for the Structure and Dynamics of Matter
Some recent key results

How to engineer materials with light?

Part I: Optical control of chiral superconductors

Short laser pulses allow for switching of Majorana modes

M. Claassen et al., arXiv:1810.06536

Part II: From classical to quantized photon fields

Materials engineering in an optical cavity using vacuum fluctuations

M. A. Sentef et al., Science Advances 4, eaau6969 (2018)
I Optical control of Majoranas

• prior work: optical control of competing orders

Theory of Laser-Controlled Competing Superconducting and Charge Orders

M. A. Sentef, A. Tokuno, A. Georges, and C. Kollath
Phys. Rev. Lett. 118, 087002 – Published 21 February 2017

– near-resonant laser driving switches between phases

charge-density wave

s-wave superconductor
I Optical control of Majoranas

• can one switch the chirality of a 2D topological superconductor?

Sr$_2$RuO$_4$, highly doped graphene, twisted bilayer graphene, ...?

key idea: use two-pulse sequence with linearly and circularly polarized light
Nonequilibrium pathway to switching

\[\Delta_{\text{equilibrium}} \sim \begin{cases} p_x + i p_y \\ p_x - i p_y \end{cases} \]

\[\Delta_{\text{non-eq}}(t) \sim \cos(\theta) \ "p_x + i p_y" + \sin(\theta) e^{i \phi} \ "p_x - i p_y" \]
multiband Bogoliubov-de-Gennes Hamiltonians for doped graphene (d+id) and Sr$_2$RuO$_4$ (p+ip) coupling to fermionic reservoir to dissipate energy

laser driving via Peierls substitution

self-consistent Keldysh equations of motion for Nambu Green’s functions:
Optical control of Majoranas

two-pulse sequence reverses d+id state in graphene

time-resolved spectroscopy tracks chirality reversal
Bloch vector rotation
A “programmable” topological quantum computer?

non-Abelian statistics of Majorana fermions:
- half-quantum vortices of chiral superconductors host single Majorana fermions
- Two Majoranas represent one electron: $\frac{1}{2} + \frac{1}{2} = 1$

→ Braiding between Majoranas is a non-Abelian operation in electron (charge) basis!

simplest operation: a **switchable Hadamard gate**

Ivanov, PRL 86, 268 (2001)
B. Lian et al., PNAS 115, 10938 (2018)
Summary I

- All-optical control of chiral Majorana modes
- towards arbitrarily programmable quantum computer?

“program the gate optically, read it out electrically“

M. Claassen D. Kennes
From classical to quantum light

collective strong light-matter coupling

what about cavity materials?

R. Chikkaraddy et al., Nature 535, 127 (2016)
II Cavity materials

- can one use enhanced vacuum fluctuations to change materials properties?
Cavity materials

BCS superconductors: phonon-mediated superconductivity

Cavity-assisted mesoscopic transport of fermions:

Coherent and dissipative dynamics.

Hagenmüller et al., 1801.09876

Cavity-mediated electron-photon superconductivity

Frank Schlawin, Andrea Cavalleri, and Dieter Jaksch

1804.07142

Cavity Quantum Eliashberg Enhancement of Superconductivity

Jonathan B. Curtis, Zachary M. Raines, Andrew A. Allocco, Mohammad Hafezi, and Victor M. Galitski

1805.01482

Manipulating quantum materials with quantum light

Martin Kifner, Jonathan Coulthard, Frank Schlawin, Arzhang Ardavan, and Dieter Jaksch

1806.06752

Cavity superconductor-polaritons

Andrew A. Allocco, Zachary M. Raines, Jonathan B. Curtis, and Victor M. Galitski

1807.06601

Superradiant Quantum Materials

Giacomo Mazza and Antoine Georges

1804.08534

Ab-initio Exciton-polaritons:

Cavity control of Dark Excitons in two dimensional Materials

Simone Latini, Enrico Ronca, Umberto De Giovannini, Hannes Hüttener, and Angel Rubio

1810.02672
monolayer FeSe/STO: $T_c > 65$ K
bulk FeSe: $T_c = 9$ K

monolayer FeSe/STO: ARPES

experiment

theory

replica bands: forward (small-q) electron-phonon scattering

Lee et al., Nature 515, 245 (2014)

Rademaker et al., New J. Phys. 18, 022001 (2016)
monolayer FeSe/STO: interfacial phonon

bare el-phonon vertex

\[g(q) = g_0 \exp\left(-\frac{|q|}{q_0}\right) \]

\[q_0^{-1} = \hbar_0 \sqrt{\epsilon_{||}/\epsilon_\perp} \]

\[\epsilon_{||}/\epsilon_\perp \approx 100 \]

Lee et al., Nature 515, 245 (2014)

Huang and Hoffman, Annu. Rev. CMP 8, 311 (2017)
Cavity engineering

- idea: use **phonon polaritons** to enhance electron-phonon coupling

Huang and Hoffman, Annu. Rev. CMP 8, 311 (2017)
Model and Method

Max Planck Institute for the Structure and Dynamics of Matter

$$H = \sum_{\vec{k},\sigma} \epsilon_{k} c_{k,\sigma}^{\dagger} c_{k,\sigma} + \frac{1}{\sqrt{N}} \sum_{\vec{k}, \vec{q}, \sigma, \lambda=\pm} c_{\vec{k}+\vec{q},\sigma}^{\dagger} c_{\vec{k},\sigma} (g_{\lambda}^{*}(\vec{q}) \alpha^{\dagger}_{-\vec{q},\lambda} + g_{\lambda}(\vec{q}) \alpha_{\vec{q},\lambda}) + \sum_{\vec{q}, \lambda=\pm} \omega_{\lambda}(\vec{q}) \alpha^{\dagger}_{\vec{q},\lambda} \alpha_{\vec{q},\lambda}$$

G-self-consistent Migdal-Eliashberg diagram

$$g(\vec{q}) = g_{0} \exp(-|\vec{q}|/q_{0}) \quad q_{0}^{-1} = h_{0} \sqrt{\epsilon_{||}/\epsilon_{\perp}}$$

$$\hat{\Sigma}(\vec{k}, i\omega_{n}) = \frac{-1}{N\beta} \sum_{\vec{q}, m, \lambda=\pm} |g_{\lambda}(\vec{q})|^{2} D^{(0)}_{\lambda}(\vec{q}, i\omega_{n} - i\omega_{m}) \hat{\tau}_{3} \hat{G}(\vec{k} + \vec{q}, i\omega_{m}) \hat{\tau}_{3}$$

$$\hat{\Sigma}(\vec{k}, i\omega_{n}) = i\omega_{n}[1 - Z(\vec{k}, i\omega_{n})] \hat{\tau}_{0} + \chi(\vec{k}, i\omega_{n}) \hat{\tau}_{3} + \phi(\vec{k}, i\omega_{n}) \hat{\tau}_{1}$$

$$\lambda \equiv Z(\vec{k}_{F}, i\pi/\beta) - 1$$

Mass enhancement: $$m^*/m = 1 + \lambda$$
Cavity materials: Phonon polaritons

\[\omega(q) \]

- \(\omega_+ \) (upper polariton)
- \(\omega_- \) (lower polariton)
- \(\omega \) (photon)
- \(\Delta \) (phonon)

A enhanced electron-phonon coupling, controlled by cavity volume
Suppressed superconductivity despite enhanced el-ph coupling

Forward scattering

$$T_C \approx \frac{\lambda \Omega}{2 + 3\lambda}$$

vs.

$$T_{C,BCS} \approx 1.13\Omega \exp\left(-\frac{1}{\chi}\right)$$

q-independent scattering
• cavity leads to enhanced electron-phonon coupling
• can one also enhance superconductivity?

Science Advances 4, eaau6969 (2018)
Team and collaborators

thank you for your attention!